Inverse Simulation

Anže Slosar, Brookhaven National Laboratory

BNL group meeting, Jun 15

Recap

- N-body simulations are our only tool to understand deeply non-linear structure formation
- In the very early universe, evolution of perturbations can be calculated exactly
- ► After CMB in the matter domination, linear evolution is very easy: each mode grows independently:

$$\rho(\mathbf{x}) = \bar{\rho}(1 + \delta(\mathbf{x})) \tag{1}$$

$$\delta(\mathbf{x}, z) = G(z)\delta(\mathbf{x}) \tag{2}$$

$$\delta_k(\mathbf{k}, z) = G(z)\delta_k(\mathbf{k}) \tag{3}$$

$$P(z,k) = G(z)^2 \langle \delta_k \delta_k^* \rangle \tag{4}$$

Running simulations

- You form initial conditions by picking a sufficiently high redhift and:
 - ▶ Loop over *k*-modes
 - For each k- mode pick a Gaussian random complex number with variance P(k) (and random phase)
- ▶ This gives you a realization of the field at given redshift
- Move particles appropriately and give them appropriate linear velocities
- Start a full integration of the system:
 - ▶ Large scale remain linear and grow according to G(z)
 - Small scales evolve into fully non-linear structure

500 Mpc/h

Phase rotation

We can transform any Gaussian initial conditions of an N-body simulation into an equally likely initial conditions by transforming like

$$\delta_1(\mathbf{k}) \to A\delta_1 = \delta_1 A(\mathbf{k}),$$
 (5)

lf

$$AA^* = 1, (6)$$

$$A(\mathbf{k}) = A^*(-\mathbf{k}). \tag{7}$$

the rotated initial conditions are an equally likely realization of the same universe.

Two special cases:

- $ightharpoonup A=\pm 1$, a constant
- $ightharpoonup A = e^{i\mathbf{k}\mathbf{r}}$, a translation

Inverse simulations

A trivial case A = -1. We have

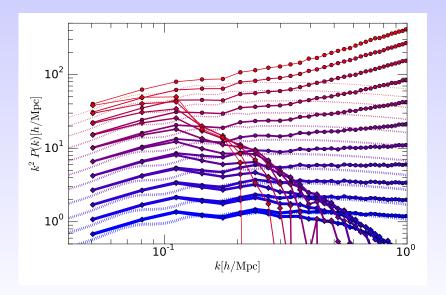
$$\delta \to -\delta$$
 (8)

(both in real and Fourier space)
You get a pair of initial conditions, but

- Overdensities in correspond to underdensities in the other (and vice versa)
- Halos in one will correspond to voids in the other (and vice versa)
- Large scales are expected to evolve the same (up to a minus sign).
- Small scales will "decorrelate"

We run a pair

- w Pontzen (UCL)
- ▶ 200 Mpc, 512³ particles, WMAP5 cosmology
- Run standard and inverse



Perturbation theory

There are many perturbation theory approaches. In SPT

$$\delta(\mathbf{k}) = \sum_{i=1}^{\infty} a^i \delta_i(\mathbf{k}), \tag{9}$$

where $a\delta_n$ term is a convolution of n initial fields δ_1 with a relevant perturbation theory kernel and where translational invariance reduces the dimensionality of the integral to n-1:

$$\delta_n(\mathbf{k}) = \iiint F_n(\mathbf{k}, \mathbf{k}', \mathbf{k}'' \dots) d^3 \mathbf{k}' d^3 \mathbf{k}'' d^3 \mathbf{k}''' \dots d^3 \mathbf{k}'^{(n-1)\text{times}} \delta_1(\mathbf{k}') \delta(\mathbf{k}'')$$
(10)

It is immediately clear that for the inverse simulations, the orders in the evolved field are the same in magnitude, but that odd ones flip the sign:

$$\delta_{i,j} = (-1)^j \delta_j \tag{11}$$

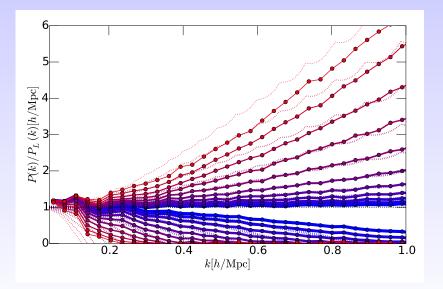
Perturbation theory

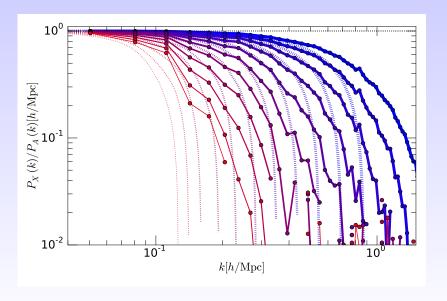
The standard auto-power spectrum is given by

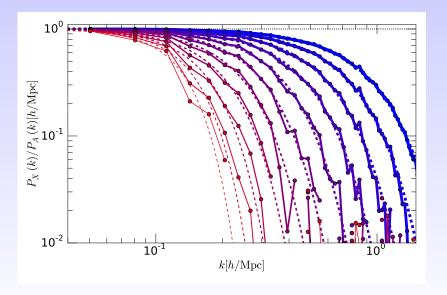
$$P(k) = \langle \delta(\mathbf{k})\delta^*(\mathbf{k})\rangle = P_{11}(k) + (P_{13}(k) + P_{22}(k)) + \dots$$
 (12)

where P_{11} is the linear power spectrum and at second order we get two contributions $P_{22} = \langle \delta_2(k) \delta_2^*(k) \rangle$ and $P_{13} = 2 \langle \delta_1(k) \delta_3^*(k) \rangle$. The cross-power spectrum between the standard and inverse field is the same, but the some terms acquire negative sign:

$$P_X(k) = \langle \delta(\mathbf{k})\delta^*(\mathbf{k})\rangle = -P_{11}(k) + (-P_{13}(k) + P_{22}(k)) + \dots$$
 (13)







Fitting supression

We fitted $P_x(k)/P_I(k)$ with the following function fomr:

$$\frac{P_{X}(k)}{P_{A}(k)} = e^{-\left(\frac{k}{k_{\rm NL}}\right)^{\alpha}} \tag{14}$$

We see that this simple formula is an excellent fit down to 6th snapshot corresponding to redshift of $z\sim 2$. In fact, the fitted α is equal to 2 to 4 significant figures at z=9, is around 2.2 at redshift of z=2 and raises to ~ 3 at z=0.

Cleary a deeper reason for Gaussian suppression. Argument why expansion parameter should be small $(k/k_{\rm NL})$ rather than δ .

Conclusions

- ▶ Currently running simulations where just $k < k_{\star}$ modes are flipped: can test the spreading of information in modes
- ► Excellent tool for void studies identify halos in inverse, look where those particle IDs end up in standard
- Very good tool for testing various perturbation schemes, e.g.
 Effective Field Theory